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Poiseuille flow in an infinitely long circular capillary was studied numerically in [i] 
and by variational methods in [2, 3]. Papers on this problem appear frequently in proceed- 
ings of conferences on the dynamics of a rarefied gas (e.g. [4]). Actually the length of a 
channel is finite. In this case the special problems of free-molecule [5] and viscous [6] 
flows of a gas are generally treated. It is therefore of interest to solve the problem over 
the whole range of Knudsen numbers Kn=ll/r, where 11 is the molecular mean free path, and r 
is the radius of the capillary. The problem is simplified somewhat by assuming that the 
channel is long enough so that the ratio of its length to its radius L, =Z/r>>l. We choose 
the Bhatnagar~Gross--Krook (BGK) equation [7] as the input equation for the distribution func- 
tion for molecular velocities. We solve the linearized problem by reducing the input equa- 
tion to a Fredho!m integral equation for the mean molecular speed, which we solve by the 
Galerkin method [8, 9]. 

i. Suppose gas flows from the first reservoir into the second. The temperatures of the 
gas are the same in both reservoirs, and the number densities are negligibly different. The 
z axis is oriented along the direction of gas flow, as shown in Fig. i. The x and y axes 
lie in the plane of a middle cross section of the channel, and the origin is at the center 
of the capillary. 

We take the following scales: 

r, n,,h'/~ = (2RT,)'/~, Tx, nLh-3/~, ~l = nxmvkJ2 

for length, number density of the gas, mean velocity of the gas u and the speed of a molecule 
c, temperature T, the distribution function f for molecular velocities, and the viscosity n 
respectively. Here R is the gas constant, v =(8RTI/~)~/2; ~, =(/~n,a2)-~; and m and ~ are 
the mass and diameter of a molecule. The subscripts i and 2 denote parameters of the gas in 
the first and second reservoirs. 

Molecules from the first reservoir enter the channel through the cross section z =--L 
(L •L,/2) with a distribution function f~, and from the second reservoir through the cross 
section z •L with a distribution function f2. We assume that particles are diffusely reflect- 
ed from the channel walls with a distribution function f3. We assume that the gas density 
is a linear function of z: 

]i = ~-s/: exp (-- c2),/2 = nJ1, ~ = [i -- K(L + z)]~, (1.1) 

K = (i -- n2)/L~. 
Equations (i.i) are boundary conditions for the BGK equation [i0]. They determine the dis- 
tribution functions for molecules whose velocities are directed into the capillary: 

ca11~ = 6n(/o -/), /o = !i(I + ~ + 2cu), (i. 2) 

n= I + v, v =-- K(L-~ z), 8 = ~/2Kn 

Here fo is the linearlzed local Maxwellian distribution function for the molecules, n is tile 
number density of the gas molecules, s is the radius vector of the observation point with 
the direction ~ (~ is a unit vector in the direction of the velocity c =ca). We assume that 
the mean speed of the gas u<<l, and that the absolute magnitude of the perturbation of the 
number density l~I<<l. We write the required distribution function in the form f =f,(l +9 + 
hx), w|~re the perturbation of the distribution function lh11<<l. 

We assume that the channel is long enough so that end effects can be neglected, and that 
u has only a z component. Then the velocity will not depend on z, and all the cross sections 
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Fig. i 

of the capillary become equivalent. Therefore, we can choose the cross section z =0 for 
study. In this formulation of the problem the mean speed of the gas depends only on the 
distance p from the observation point to the z axis. Using the definition of the mean speed 
of the gas in terms of the distribution function 

and Eq. 
tion: 

S lccosOde,  de = c2dedfl, dfl = sinOdOd~ U 

( 1 . 2 ) ,  we o b t a i n  an  i n t e g r a l  e q u a t i o n  f o r  t h e  mean s p e e d  o f  m o l e c u l e s  i n  t h e  z d i r e c -  

a -~n . [  (K + 28u) Is (&) cos ~ Odsdft, U (1. 3) 
1" 1 

where Vl is the volume of the channel, @ is the angle between the ~ vector and the z,axis, 
s is the length of the radius vector s, and ~ is the polar angle in the z =0 plane (Fig. i). 
The Abramowitz integral 13 [ii, 12] appears in the Fredholm integral equation of the second 
kind (1.3). In the general case this integral is defined as 

I,,, (t) = j c ~ exp ( -  c ~ -  t/c) de. 
0 

2 .  We s o l v e  Eq. ( 1 . 3 )  by  t h e  G a l e r k i n  me thod  [ 8 ] .  We c h o o s e  l and p2 ,  whe re  0 2 =x  2 + 
2 y , as basis functions, The expansion of the mean speed in the system of basis functions 

has the form 

u /K  = C -- Dp'-, (2.1) 

where the expansion coefficients C and D depend on the parameters ~ and L. Substituting Eq. 
(2.1) into (1.3) and integrating over the middle cross section P (Fig. i) with the weights 
1 and p2, we obtain a system of linear algebraic equations for the unknown coefficients C 
and D: 

bnC ~- br,.O = b,, b.,~C -I- b.,.,O = ~ .  ( 2 . 2 )  

The coefficients bij and b i contain the multiple integrals 

( _  ~)i+* oil i "~'~ 
bi~ = 2 (~ -i- ] --  1) -{- cii ' b~ = ~ ,  :=~1 --= t ,  2, 

1 (2.3) 
8~ _',~-1~^ p~O-*) ~ S oo ,@d dO 

0 Vii4 

where p~ .... p~sin:O--p:--2p(p--o0cos ~o) S/~ (the subscript 0 refers to a point on the surface 
of the volume V, of the capillary). As a result of the symmetry with respect to z and ~ we 
integrate over one quarter of the volume. Knowing the values of C and D, we find the reduced 
flow rate of the gas: 

1 

4 I 2C ( 2 . 4 )  Q = " k - ,  pudp = - - D .  
0 

Figure 2 illustrates the results of calculations with Eq. (2,4). Curves 1-4 correspond 
to channel lengths L, =~, 40, 20, i0. The computer time is considerably shortened by using 
the expansion of Is (~s) in powers of ds when ~L~2 [ii, 12]. 
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For 8L > 2 it is convenient to use the asymptotic representations of the Abramowitz 
integrals. With this in mind we separate out of each of the coefficients bij and bi the 
part giving the coefficients aij for the equations determining the solution, i.e. the coeffi- 
cients C and D for an infinitely long channel: 

(--i) ~u aii=2~zi)-~-Ji~, ai=---~fli .  (2.5) 

The symbols Jij denote the definite integrals 

i 
28 

0 P/2 

where P~ =0 2 +s a +20s cos~. As a result of the symmetry with respect to ~ we integrate over 
half the cross section P of the channel (Fig. i). Then we can write the coefficients in Eqs. 
(2.2) in the form 

r t 

b~ = a~  + c~,  bi = a~ - -  c~1/(26). 
t 

The quantities cij contain integrals over the volume V2 which extends the length of the chan- 
v 

nel under consideration to infinity. The formula for cij is obtained from the relation for 
cij in (2.3) by replacing V, by V2. 

3. It is of interest to investigate the behavior of the reduced flow rate Q (2.4) for 
very large and very small values of the rarefaction parameter 8. As 8 § which corresponds 
to free-molecule flow of the gas, we obtain 

Q = Qo - / t  In L 1 + 3.0448 --  3.395~/L (6L << i). 
Here Qo is the flow rate of the gas through a channel of length L~ in free-molecule flow: 

Qo = [ La - ] /(4 -~- L2) a q- 6L -5 8]/(3 ]/~).  

This result differs from the more accurate formula [5] 

2L1 { . . . . .  ] Q, = ~ i q- L 2 -- L ]/i + L ~ 2 [L ~ -- 2 -- (2 -- L 2) ]/~]2 

The error is 19% for Lx =i0, and decreases to zero with increasing channel length (Fig. 3). 
This inaccuracy can be eliminated if Eq. (1.3) is supplemented by the condition that there 
is no flow of gas at the wall which, for free-molecule flow, is transformed into the Clausing 
equation [13]. 

When 6L>>I, it is easy to derive formulas containing the well-known expressions 

Q - -  3 - - ~ - ~ 6 1 n / i -  exp( - -3 t ) (SL>>l ,  ~<<t); (3 .1 )  

4 + : r  6 a 
Q---4  + 4W~ 1/~L.,.tZexp(--3t)(6L >> i, 6>>t), (3 .2)  

where t=(dL/2) a/a. The first terms in Eqs. (3.1) and (3.2) correspond to values of the rate 
of flow of gas through an infinitely long channel under free-molecule and viscous flow condi- 
tions respectively [14]. The following terms decrease very rapidly with increasing 8L. 

The solution Q which follows from Eqs. (2.5) for an infinitely long channel (Table i) 
is in good agreement with data in [I, 2] on Q2 and Q3 obtained by numerical and variational 
methods respectively. 
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TABLE i 

,o { 5,0 
2,1079 I 2,3438 

2,1188 { 2,3578 

2,1079 I 2,3438 

The results of the solution can be refined by taking end effects into account [6]. 
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